STEM CELLS IN HEMATOLOGY Hematopoietic stem cell exhaustion impacted by p18INK4C and p21Cip1/Waf1 in opposite manners

نویسندگان

  • Hui Yu
  • Youzhong Yuan
  • Hongmei Shen
  • Tao Cheng
چکیده

Transplantation-associated stress can compromise the hematopoietic potential of hematopoietic stem cells (HSCs). As a consequence, HSCs may undergo “exhaustion” in serial transplant recipients, for which the cellular and molecular bases are not well understood. Hematopoietic exhaustion appears to be accelerated in the absence of p21Cip1/Waf1 (p21), a cyclindependent kinase inhibitor (CKI) in irradiated hosts. Our recent study demonstrated that unlike loss of p21, deletion of p18INK4C (p18), a distinct CKI, results in improved long-term engraftment, largely because of increased self-renewing divisions of HSCs in vivo. We show here that HSCs deficient in p18 sustained their competitiveness to wild-type HSCs from unmanipulated young mice, and retained multilineage differentiation potential after multiple rounds of serial bone marrow transfer over a period of more than 3 years. Further, p18 absence significantly decelerated hematopoietic exhaustion caused by p21 deficiency. Such an effect was shown to occur at the stem cell level, likely by a counteracting mechanism against the cellular senescence outcome. Our current study provides new insights into the distinct impacts of these cellcycle regulators on HSC exhaustion and possibly HSC aging as well under proliferative stress, thereby offering potential pharmacologic targets for sustaining the durability of stressed HSCs in transplantation or elderly patients. (Blood. 2006; 107:1200-1206)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hematopoietic stem cell quiescence maintained by p21cip1/waf1.

Relative quiescence is a defining characteristic of hematopoietic stem cells, while their progeny have dramatic proliferative ability and inexorably move toward terminal differentiation. The quiescence of stem cells has been conjectured to be of critical biologic importance in protecting the stem cell compartment, which we directly assessed using mice engineered to be deficient in the G1 checkp...

متن کامل

Simultaneous Deletion of p21Cip1/Waf1 and Caspase-3 Accelerates Proliferation and Partially Rescues the Differentiation Defects of Caspase-3 Deficient Hematopoietic Stem Cells

Specialized blood cells are generated through the entire life of an organism by differentiation of a small number of hematopoietic stem cells (HSC). There are strictly regulated mechanisms assuring a constant and controlled production of mature blood cells. Although such mechanisms are not completely understood, some factors regulating cell cycle and differentiation have been identified. We hav...

متن کامل

Pre-treatment with rapamycin protects hematopoiesis against radiation injury

Background: Protection of hematopoietic system has become a primary goal in the development of novel medical countermeasures against ionization radiation and radiotherapy. This study was to explore the role of rapamycin in normal tissues against radiation. Materials and Methods: Mice were pretreated with rapamycin by i.p. every other day for five times before 5 Gy or 8.5 Gy γ-ray whole bo...

متن کامل

Mild hypoxia and human bone marrow mesenchymal stem cells synergistically enhance expansion and homing capacity of human cord blood CD34+ stem cells

Objective(s): Cord blood (CB) is known as a valuable source of hematopoietic stem cells (HSC). Identifying strategies that enhance expansion and maintain engraftment and homing capacity of HSCs can improve transplant efficiency. In this study, we examined different culture conditions on ex vivo expansion and homing capacity of CB-HSCs. Materials and Methods: In this study, 4-5 different units o...

متن کامل

Ex vivo targeting of p21Cip1/Waf1 permits relative expansion of human hematopoietic stem cells.

Relative quiescence is a defining characteristic of hematopoietic stem cells. Reasoning that inhibitory tone dominates control of stem cell cycling, we previously showed that mice engineered to be deficient in the cyclin-dependent kinase inhibitor, p21Cip1/Waf1 (p21), have an increased stem cell pool under homeostatic conditions. Since p21 was necessary to maintain stem cell quiescence and its ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006